Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

نویسندگان

  • Jolien B. Veneman
  • Stefan Muetzel
  • Kenton J. Hart
  • Catherine L. Faulkner
  • Jon M. Moorby
  • Hink B. Perdok
  • Charles J. Newbold
  • Jose Luis Balcazar
چکیده

It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meta-Analysis of Methane Mitigation Strategies: Improved Predictions of Mitigation Potentials and Production Implications

The aim of this study was to use meta-analysis to identify the enteric methane (CH4) mitigation strategy that reduced CH4 emission without lowering production. To this end, a database initially developed was updated, compiling data from 61 publications (233 experiments) for various observations in dairy cattle on effects of hydrogen sink (H-sink), ionophore, lipid and conc...

متن کامل

Responses of Milk Urea Nitrogen Content to Dietary Rume Degradable Protein Level in Lactating Holstein Dairy Cows

Nine multiparous lactating cows averaging 171 days in milk were divided according to days in milk and milk production into three 3×3 Latin squares with three 3-week periods to investigate the effect of rumen degradable protein on milk urea nitrogen. Diets were formulated to provide 3 concentrations of dietary rumen degradable protein (9.8, 10.8, and 11.8% of dry matter), while rumen undegradabl...

متن کامل

Glycerol Supplementation in Dairy Cows and Calves

The production of biodiesel from rapeseed oil methyl ester leaves glycerol (synonym: glycerine, 1,2,3-propanetriol) as a valuable by-product and a promising feed supplement for farm animals. This thesis provides information about the supplemental feeding with glycerol to dairy cows in early lactation and to young calves, and describes the fate of glycerol entering the rumen and the impact of gl...

متن کامل

Correction for Hristov et al., An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-...

متن کامل

Greenhouse gas, animal performance, and bacterial population structure responses to dietary monensin fed to dairy cows.

The present study investigated the effects of a feed additive and rumen microbial modifier, monensin sodium (monensin), on selected variables in lactating dairy cows. Monensin fed cows (MON, 600 mg d(-1)) were compared with untreated control cows (CON, 0 mg d(-1)) with respect to the effects of monensin on the production of three greenhouse gases (GHG), methane (CH(4)), nitrous oxide (N(2)O), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015